RECEIVED OPPT MCIC

2002 JUL 29 PM 3: 16

Assessing the Impact of Body Weight on Male and Female Pubertal Development

Tammy Stoker, PhD.

Gamete and Early Embryo Biology Branch
Reproductive Toxicology Division
NHEERL, U.S. EPA

Overview

- Present data from food restriction study
- Discuss results of previous studies using male and female pubertal protocols.
- Discuss examples of published data and conclusions evaluating the role of body weight and growth on pubertal events.

Study Objectives

- Assess the relationship between growth rate and pubertal development
- Determine whether or not reduced body weights over a range of 2 – 20% confound the endpoints in the Female and Male Pubertal Protocols

A	TAIRI	A I	^nI
CON'	IAIIN	NO	

Methods

- Four groups of male and female Wistar rats (n=13) were fed 90%, 80%, 70% and 60% of ad libitum controls
- Pecentages were based on 24 h food intake of controls.

Summary of Female

- Reduced body weight gains from 2.0 to 18.8% (at necropsy)
 - no effect on VO, uterine weights or thyroid hormones
- Body weight decreases of 12.1 and 18.8%
 - decreased ovarian weight
- Importantly, there were no significant differences in any of the female reproductive endpoints at less than 12.1% decreased body weight.

◆ Body Weight at Necropsy:

Male Wistar Rats

Percent reduction in BW as compared with control

- Group 90 (2.2%)
- Group 80 (4.4%)
- Group 70 (12.5%)
- Group 60 (20.7%)

. || ||

	Con	90%	80%	70%	60%
Mean SEM		287.9 1.08			236 3 1.06

Male Summary

- Reductions in body weight gain from 2.2 to 20.7% had
 - no effect on PPS or testes weight
 - Decreases in body weight from 12.5 to 20.7%
 - decreased T3 and T4
 - Decreases in body weight of 20.7%
 - decreased ventral prostate, seminal vesicle and epididymal weights
 - Importantly, there were no significant alterations of the male reproductive endpoints at decreases of less than 12.5%.

Study Conclusions

- A 10% reduction in body weight has no effect on pubertal development
- Pubertal protocols detect a wide variety of EDCs apart from modest decreases in BW

Background Literature

- Studies were designed to retard reproductive senescence and prolong lifespan:
 - > Litter alterations during early postnatal days resulted in 30 65% bw difference.
 - > Other studies severely restricted food intake at weaning.
 - > Indeed, these studies found that puberty was delayed.
 - > The first week of life is critical for nourishment and setting of adult bw.

Continued:

- "attainment of critical bw" hypothesis
- "critical body fat" hypothesis
- "growth rate" hypothesis
- All have been questioned by more recent investigations which were unable to repeat earlier studies(Aguilar et al.,1984; Glass et al., 1984, Ronnekleiv, Ojeda & McCann, 1978; Bronson, 2001; Crawford and Osler, 1975).

- A 10% decrease in body weight gain in the pubertal assays does not appear to confound the selected endpoints (Connor et al., 2000).
- The reproductive systems in the adult male and female rat are relatively resistant to body weight reductions down to 70% of control (Chapin et al., 1993).

Relationship between reduction in body weight versus age at PPS
Feeding ■ DACT100 ATR ◇ DACT200
ATR ◇ DACT200
See 3 3.5 2.5 4 9 90 85 80
Percent of control body weight

Does the estrogen mediated suppression of appetite confound the detection of VO?

Methoxychlor (0, 25, 50, 100, 200 mg/kg)

Acknowledgments

- Collaborators
 - Susan Laws, Ph.D.
 - Ralph Cooper, Ph.D.
 - Earl Gray, Ph.D.
 - Jerome Goldman, Ph.D.
 - Robert Kavlock, Ph.D.
- Technical Assistance
 - Janet Ferrell
 - Keith McElroy
 - Kate Bremser
 - Korin Elliott

Reproductive Toxicology Division NHEERL, ORD, U.S. EPA